metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jiabao Weng,^{a,b} Maochun Hong,^a* Rong Cao,^a Wenhua Bi^a and Albert S. C. Chan^c

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China, ^bDepartment of Chemistry, Fujian Teachers University, Fuzhou, Fujian 350007, People's Republic of China, and ^cOpen Laboratory of Chirotechnology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Hong Kong, People's Republic of China

Correspondence e-mail: wjb@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.025 wR factor = 0.046 Data-to-parameter ratio = 6.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2.400 (3 organic

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Diaqua(*N*-salicylidene-L-2-phenylglycinate- $\kappa^3 N, O, O'$)copper(II)

The title compound, $[Cu(C_{15}H_{11}NO_3)(H_2O)_2]$, was formed by the reaction of cupric perchlorate, L- α -phenylglycine and salicylaldehyde. Crystallographic analysis shows that the compound is a new Cu–Schiff base of an amino acid complex. The ligand chelates with Cu^{II} in a tridentate fashion. One water molecule is in this ligand plane and another is in an axial position. Extensive hydrogen-bonding interactions are present. Received 26 September 2002 Accepted 13 November 2002 Online 30 November 2002

Comment

Transition metal complexes of chiral ligands attract widespread attention from the viewpoint of their structures, molecular recognition, and molecular processes (Whitesides *et al.*, 1995; Philp & Stoddart, 1996). As model systems for pyridoxal-potentiated enzymes, *N*-salicylidene-L-amino acids are being applied to synthesize a series of transition metal– chiral ligand complexes. Several *N*-salicylidene-L-amino acid– transition metal complexes have been synthesized and studied, using amino acids with different side-chain groups, such as valine (Rajak *et al.*, 1999), glutamic acid (Korhonen *et al.*, 1984), phenylalanine (Marinovich *et al.*, 1999), alanine (Warda, 1999) and methionine (Palacios *et al.*, 1989).

We report here a new Cu^{II} complex of an *N*-salicylideneamino acid, (I), formed from copper(II), L-2-phenyl-glycine and salicylaldehyde.

The coordination of the molecule can be described as 4 + 1; each Cu^{II} ion is coordinated by the carboxylate and phenolate O atoms and amine N atom from the ligand, with bond distances of 1.950 (2), 1.932 (2) and 1.900 (2) Å, respectively, together with one water molecule at 1.960 (2) Å, forming a square-planar geometry. The axial position is occupied by another coordinated water molecule, with a Cu–O distance of 2.400 (3) Å. Except for the phenyl group, all the atoms of the organic ligand and Cu^{II} are coplanar, with an average deviation of 0.084 Å. In the crystal structure of the title compound, hydrogen-bonding interactions between the coordinated water molecules and free carboxylate and phenolate O atoms result in a two-dimensional layer structure, as shown in Fig. 2.

Experimental

A 15.0 ml methanol solution of salicylaldehyde (100 ml, 1.0 mmol) and cupric perchlorate (576 mg, 1.0 mmol) was added to a 15.0 ml suspended aqueous suspension of L-2-phenyl-glycine (150 mg, 1.0 mmol). The resulting mixture was stirred until the L-2-phenyl-glycine completely dissolved. Green prismatic single crystals of the title complex (yield 72%), suitable for X-ray diffraction analysis, were obtained by evaporation of the filtered mixture at room temperature after 6 d.

 $D_x = 1.625 \text{ Mg m}^{-3}$

Cell parameters from 64

 $0.40 \times 0.36 \times 0.16 \text{ mm}$

1757 independent reflections

1509 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\mu = 1.54 \text{ mm}^{-1}$

T = 293 (2) K

Plate, green

 $R_{\rm int}=0.034$

 $\theta_{\rm max} = 27.5^{\circ}$ $h = -7 \rightarrow 7$

 $\begin{array}{l} k = -12 \rightarrow 12 \\ l = -17 \rightarrow 17 \end{array}$

 $(\Delta/\sigma)_{\rm max} = 0.116$ $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$

SUPPLY]

 $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Extinction correction: SHELXL97

Extinction coefficient: 0.0031 (12) Absolute structure: Flack (1983),

xxxx Friedel pairs [PLEASE

Flack parameter = 0.061 (18)

 $\theta = 2.7 - 27.5^{\circ}$

Crystal data

 $\begin{bmatrix} Cu(C_{15}H_{11}NO_3)(H_2O)_2 \end{bmatrix}$ $M_r = 352.82$ Monoclinic, $P2_1$ a = 5.7870 (12) Å b = 9.4205 (19) Å c = 13.242 (3) Å $\beta = 92.81$ (3)° V = 721.0 (3) Å³ Z = 2

Data collection

Siemens SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.565, T_{max} = 0.782$ 2514 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.046$ S = 0.851757 reflections 260 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0224P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Table 1

Selected geometric parameters (Å, °).

N-Cu	1.900 (2)	Cu-O5	2.400 (3)
Cu-O1	1.932 (2)	O4-H4B	0.81 (4)
Cu-O2	1.950 (2)	O5-H5A	0.75 (4)
Cu-O4	1.960 (3)	O5-H5B	1.13 (7)
N-Cu-O1	93.93 (10)	O2-Cu-O4	93.88 (11)
N-Cu-O2	84.43 (10)	N-Cu-O5	90.74 (10)
O1-Cu-O2	173.10 (11)	O1-Cu-O5	98.30 (11)
N-Cu-O4	174.51 (13)	O2-Cu-O5	88.44 (10)
O1-Cu-O4	87.12 (11)	O4-Cu-O5	94.45 (11)

One reflection, 001, was omitted due to extinction.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SMART* (Siemens, 1994) and *XPREP* in *SHELXTL* (Siemens, 1994); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; mole-

Figure 1

A displacement ellipsoid plot at the 30% probability level.

Figure 2 A view of the packing, as viewed down the *a* axis.

cular graphics: *SHELXL*97 (Siemens, 1996); software used to prepare material for publication: *SHELXL*97 (Siemens, 1996).

This work was supported by grants from the National Nature Science Foundation of China, the Chinese Academy of Science and Hong Kong Polytechnic University.

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Korhonen, K., Hamalainen, R. & Turpeinen, U. (1984). Acta Cryst. C40, 1175– 1176.
- Marinovich, A. F., O'Mahony, R. S., Waters, J. M. & Waters, T. N. M. (1999). Croat. Chem. Acta, 72, 685–703.
- Palacios, M. S., Medina, E., Manrique, F. G., Gambardella, M. P. do P., Santos, R. H. de A., Rodriguez, M. L. & Dance, J. M. (1989). *Polyhedron*, 8, 2131– 2143.
- Philp, D. & Stoddart, J. F. (1996). Angew. Chem. Int. Ed. Engl. 35, 1154-1157.
- Rajak, K. K., Rath, S. P., Mondal, S. & Chakravorty, A. (1999). *Inorg. Chem.* **38**, 3283–3289.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). *SAINT* and *SHELXTL* (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SHELXL97. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Warda, S. A. (1999). Z. Kristallogr. 241, 77-78.

Whitesides, G. M., Simanek, E. E., Mathias, J. P., Seto, C. T., Chin, D. N., Mammen, M. & Gordon, D. M. (1995). Acc. Chem. Res. 28, 37–44.